Optimising Pump Operation Times for Water Distribution Networks

Helarie Fah, Eugene Tan, Francklin Fomeni, Montaz Ali, Keneth Motjeane ,Mzwakhe Mthethwa

AIMS - MISG

- INTRODUCTION
- SINGLE TANK MODEL
- RESULTS
- FULL NETWORK
- RESULTS
- CONCLUSION

[INTRODUCTION](#page-2-0)

- Water transport and distribution accounts for 95% of the operational cost (i.e. pump operation)
- Water consumption varies throughout the day
- Energy prices to run pumps vary throughout the day

Problem: Optimise the pump operation schedule of the water distribution network such that operation costs are minimised whilst maintaining adequate water storage levels.

- The water consumption of all consumers throughout the day is known (t)
- The acceptable maximum and minimum water tank level is given h_l , h_{ll} .
- Water flow is instantaneous
- All pumps operate with the same wattage P_{pump} and flow rate Q_{pump}
- All tanks have the same physical dimensions

[SINGLE - TANK MODEL](#page-5-0)

Single -Tank Model

Define the following variables:

- $Q(t)$ Tank water level
- $y(t)$ Pump scheduling indicator function

$$
y(t) = \begin{cases} 1, & \text{pump is ON} \\ 0, & \text{pump is OFF} \end{cases}
$$

- $\mu(t)$ Water consumption rate
- q_{in} , q_{out} Input/Output tank flow rate
- $c(t)$ Cost price per energy unit
- \bullet \mathcal{C} Total daily cost

(1)

Continuous Compartmental Model

T

he amount of water in the the tank is : $\mathit{Q}(t) = \int (q_{in} - q_{out}) dt$

$$
q_{in}(t) = Q_{pump}p(t)
$$

$$
q_{out}(t) = \mu(t)
$$

$$
Then, \quad \dot{Q}(t) = q_{in}(t) - q_{out}(t)
$$

$$
= Q_{pump}p(t) - \mu(t)
$$

Tank Constraints

$$
h_L \leq Q(t) \leq h_U, \quad \forall t \geq 0
$$

Objective Function

$$
C = \int_0^{24} P_{pump} c(t) y(t) dt, \qquad \min_{y(t)} C
$$

Decisions

- When to turn on the pump
- When to turn it off
- the amount of water available in the tank

objective function

$$
minC = \sum_{t=0}^{T} C(t) y(t)
$$

Constraints

- $Q(t) = P(t)y(t) + Q(t-1) D(t)$
- $h_1 \leq P(t)y(t) + Q(t-1) D(t) \leq h_0$

- We randomly generated a set of data to check and validate the effectiveness of our model
- 24 time periods
- The cost, the demand for each time period are random uniform integer numbers

9

Result from Real Data

10

[FULL NETWORK](#page-14-0)

• Cases Variability.

Multi-tank Case

• All combined to form the full network.

Multi-tank Case

 \bullet $y_t^i =$

Define the following variables

- $v_t \rightarrow$ Pump set of all pump scheduling indicator at time t
- $x_t \rightarrow$ Set of all switch scheduling indicator at time t
	- $\int 1$ if the pump i is on at time t
		- 0 otherwise
- $\bullet \; x_t^{jj'} =$ $\int 1$ if the switch between tanks j and j' is on at time t 0 otherwise
- $\bullet \ \ Q^j_t \to$ level of water in the tank j at time t
- $\bullet \ \ C^i_t \to \mathsf{Cost}$ (from the pump i at time t)
- $\bullet\hspace{0.1cm}$ $C^{jj'}_t\to \text{cost}$ (from the switch between tanks j and j' at time t)
- $\bullet\,\,$ P $^{\textit{ij}}\rightarrow$ Amount of water pumped in tank \textit{j} from pump i
- $\bullet \,\, S^{jj'} \to A$ mount of water pumbed from tank j to tank j'
- $\bullet\;\; D^{jk}_t \to$ The amount of water from tank j to satisfy part of the demand at the demand point k during the time period t

Multi-tank Case

The objective function is :

$$
\min \qquad \sum_{i \in I} \sum_{t=1}^{T} C_t^i y_t^i + \sum_{j \in J} \sum_{j' \in J_+^i} \sum_{t=1}^{T} C_t^{jj'} x_t^{jj'}
$$

Subjected to:

$$
h_{L_j} \leq Q_t^j \leq h_{U_j} \qquad \forall j \in J, t = 1 \dots, T
$$

$$
Q_t^j = Q_{t-1}^j + P^{ijj} y_t^{i_j} + \sum_{j' \in J_-^j} S^{jj'} x_t^{jj'} - \sum_{j' \in J_+^j} S^{jj'} x_t^{jj'} - D_t^{jk} \qquad \forall j \in J, t = 1 \dots, T
$$

$$
D_t^k = \sum_{j \in J^k} D_t^{jk} \quad \forall t = 1, \dots, T, k \in K
$$

 $x, y \in \{0, 1\}$, and $Q \ge 0$.

- The above model is a mixed integer linear problem (MILP)
- Small instances of this type of problem can be solved using MS Excel or the optimization toolbox of Matlab.
- But larger instances will require the use of more sophisticated optimization solvers (CPLEX, GUROBI, etc).

[CONCLUSION](#page-25-0)